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$ Department of Physics, Kyushu University, Fukuoka 812, Japan 

Received 30 March 1984, in final form 31 July 1984 

Abstract. We study the static correlations of monomer density fluctuations in semi-dilute 
polymer solutions in a good solvent. By means of the conformation space renormalisation 
theory, the universal scaling form ofthe scattering functions is obtained up to order E = ( 4  - d )  
with d the dimensionality of space. In a dilute limit agreement with the experiment is 
improved over the mean field theory. The correlation length and the osmotic compressibility 
obtained previously are also compared with the recent light scattering experiment. These 
theoretical results exhibit a very good agreement with the experimental observation without 
any adjustable parameters. 

1. Introduction 

Statistical properties of semi-dilute polymer solutions have been studied for many 
years both theoretically and experimentally. In  a good solvent earlier theories were 
mainly based on the perturbation expansion in terms of the excluded volume parameter 
or the mean field approximation (e.g. Yamakawa 1971). However the theory breaks 
down below four dimensions for sufficiently large values of the polymerisation index 
N where the universal features of polymer solutions are revealed. One of the results 
which are still relevant at present is Flory’s self-consistent method of evaluating the 
exponent v for the mean square end-to-end distance of an isolated polymer chain 
(Flory 1971). Although a recent advanced theory (Le Guillou and Zinn-Justin 1980) 
yields a slightly different value of v, the Flory value v = z  in three dimensions is 
practically very accurate and has been confirmed experimentally (Louchex et a1 1958). 
A generalisation to evaluate thermodynamic quantities such as the osmotic pressure 
has been attempted recently (Muthukumar and Edwards 1982). 

An essentially new progress was initiated by the development of the theory of phase 
transition. The concept of the universality and the scaling law have been found to be 
very useful in polymer problems as well (de Gennes 1979). A renormalisation group 
approach (Wilson and Kogut 1974, Brezin et a1 1976) is mostly suitable for formulating 
the scaling law and computing the asymptotic universal quantities. Application of the 
renormalisation group theory to polymer solutions was first achieved by the polymer- 
magnet analogy (de Gennes 1972, des Cloizeaux 1975). Indeed the correspondence 
has been used successfully by various authors (Daoud and Jannink 1976, Moore 1977, 
Witten and Schafer 1981, Knoll er a1 1981). The scaling law has been observed to 
some extent experimentally (Daoud er a1 1975, Chu and Nose 1980, Amirzadeh and 
McDonnel 1982, Oyama et a1 1982). However the analogy has its own limitation. One 
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has to deal with the n-component magnetic system with n + 0 limit. Thus it is quite 
difficult, especially for polymer chemists, to follow intuitively the theory. Furthermore 
the magnet analogy is not capable of treating the dynamics. These disadvantages are 
avoided by a sort of direct renormalisation group methods (AI-Noaimi er a1 1983, 
Jasnow and Moore 1978, des Cloizeaux 1981, Shiwa and Kawasaki 1982). In particular 
the conformation space renormalisation group theory has been applied to both statics 
and dynamics in the dilute limit (Oono 1979, Oono et a1 1981, Oono and Kohmoto 
1983, Oono 1983). 

It has been shown in a previous paper (Ohta and Oono 1982) that Edwards’ mean 
field approach (Edwards 1966) is a good starting point for constructing the conforma- 
tion space renormalisation group theory of semi-dilute polymer solutions. The calcula- 
tion of the osmotic pressure and the correlation length 5 of monomer density fluctu- 
ations in a good solvent enables us to compare with experiments without any adjustable 
parameters (Ohta and Nakanishi 1983, hereafter referred to as I ) .  Freed (1983) has 
also calculated the quantities similar to those obtained in I. It seems to us, however, 
that the expression of 6 is erroneously simplified. As was criticised by the author 
himself it does not exhibit the proper scaling behaviour in the semi-dilute limit. Later 
but independently by means of the polymer-magnet analogy a similar study has been 
done by Schafer (1984) including a temperature crossover. 

In this paper we present our calculation of the correlation functions by a renormali- 
sation group theory in a good solvent. This is the first attempt to study the scaling 
function of the non-uniform quantities in the semi-dilute region. The scaling form of 
the scattering function G ( q )  of a test chain and S ( q )  of the full monomer density 
fluctuations is obtained up to order E = (4 - d )  with d the spatial dimension of a system. 

The qualitative behaviours of the correlation functions can be obtained by the 
scaling argument (de Gennes 1979). In the region q > t-’, S ( q )  reduces to G(q)  which 
is then given by (Edwards 1966) 

G( q )  - q - ” y .  

This relation has been checked experimentally in the dilute limit (Okano et a1 1974) 
and in the semi-dilute regime (Cotten er a1 1974, Farnoux er a1 1975). An extensive 
review of the scattering experiments on polymers has been made by Higgins (1978). 
For q < S ( q )  is screened and is given approximately by 

S( q )  - ( q2 + [ - * ) - I .  

Thus there is a crossover from (1.1) to (1.2) with changing wavenumber. A quantitative 
study of this crossover has not been available except for the recent experiment by 
Noda er a1 (1983) in a dilute limit. Therefore the renormalisation group calculation 
of the scaling form of G ( q )  and S ( q )  is of much interest for further understanding 
the polymer solutions in a good solvent. 

In § 2 we summarise the results obtained in I .  The renormalisation group analysis 
of the correlation functions will be given in § 3. Comparison with the experiment by 
Noda er a1 (1983) is made in § 4. Quite recently Wiltzius er a1 (1983) have measured 
the concentration dependence of the correlation length 5 and the osmotic compressibil- 
ity. Their results are compared with our theory. In § 5 we discuss the relationship 
between our theory and Schafer’s approach. 
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The formula for the scattering function S ( q )  has been given in I by 

S ( q )  = U-' - u-2(4q4-q) (2.7) 

where the average is taken with respect to H ( 4 ) .  U p  to the one-loop order S ( q )  is 
given by 

S ( q )  = cJ (q ) / ( l+  cuJ(q)) (2.8) 

where 

J (  q )  = G( q )  + 18cu2 (2.9) 

The function G ( q )  is the scattering function of a test chain which is given up  to O ( u )  
by 

G ( q )  =2f" ' (q ) -2u  (I*.'"(q,p) - f ' 2 ' ( q ) f ' 2 1 ( p ) ) ( 1  +2cuf i2 ' (p ) ) - l  (2.10) 

where 

Each of these six terms which contribute to the intrachain correlation has a definite 
physical meaning as was shown pictorially in figure 1 of Ohta et al (1982). 

Equations (2.8) and  (2.10) yield the complete expressions of S ( q )  and G ( q )  
respectively up  to O ( u ) .  In  I we have restricted ourselves to the small wavenumber 
regime to obtain the correlation length and the radius of gyration. Here we wish to 
study the full scaling form of the correlation functions by the first-order &-expansion. 

3. Renormalisation group analysis and the scaling function 

The expansions of G( q )  and S( q )  up  to order u N ( ' - ~ ) ,  ' , obtained in (2.10) and  (2.8) 
respectively, break down below four dimensions in the asymptotic limit where 

>> I .  In order to defeat this difficulty we resort to the renormalisation group 
method with E (  = 3  - d )  expansion. Scaling functions of G ( q )  and S ( q )  will be obtained 
up  to first order of e. The integration over p in (2.9) and  (2.10) may be carried out 
in four dimensions. 

u ~ ' 4 - d ' / 2  

Here we define for later convenience 

F"'( Q, P) = r(3'( q, p ) /  N 3  

Ft4'( Q, P) = (I*.'4i(q, p )  - f"'(q)f"'(p))/ N4 

where 

Q = q(N/2)"?,  P = P ( N / ~ ) " ~ .  (3.3) 

F"'( Q, P) = 2g( Q2)/3Pz (3.4) 

F'4'(Q, P )  = ( ~ D ( Q ' ) / Q * ) { - ~ P .  Q / P 4 + ( 2 P *  Q)2/P6} (3.5) 

For sufficiently large values of P we find from ( A l )  and  (A2) that 
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with 

g(x)  = I / X -  I /x2+e-‘ /x2  (3.6) 

(3.7) gD(x) = I / X  - 2 / x 2 +  ( I / X  + 2 / x 2 )  e-‘. 

The first term in the bracket of (3.5) was omitted in I since it does not contribute to 
the correlation length calculated there. The above asymptotic forms for P >> 1 yield 
the logarithmically divergent parts of G( q )  and J ( q )  at d = 4 as follows, 

[G(q)ldlv= -8uN2(gD(Q2)/Q2) 1 [ ( 2 p *  Ql2/p61 (3.8) 
P 

[ J ( q ) l d i v  = -8uN’(g,(Q’)/Q’) 1 [ ( 2 P *  Q ) ’ / P 6 ] + 3 2 ~ N 2 ( c ~ N ’ ) [ g ( Q 2 ) ] *  l /P4 

(3.9) 

where the integral should be understood to have the ultraviolet cut-off ( N / 2 a ) ’ / ’  with 
a, a microscopic cut-off parameter. These logarithmic anomalies will be shown to be 
renormalised into the zeroth term of G ( q )  and S ( q ) .  We d o  not describe the details 
of our renormalisation procedure which has already been given in I. 

Hereafter we employ a renormalised pertubation theory. The excluded volume 
parameter U is replaced by its fixed point value U* and N should be understood to 
be renormalised. First we derive the scaling form of scattering function of a test chain 
G ( q ) .  Extracting the singular part of (2.10) G ( q )  is expressed u p  to O ( u * )  with cu*N’ 
fixed, 

P c, 

4 cos2 e 
p4+2 

d P P 3  loE dB sin’ 0- G(q)=2N2g(Q2)-8U*N2g~(QZ)(1/4. ir3)  

F‘4’( Q, P) 
( 1 + 2cuN’g( P’)) 

-8u*N*( 1/4.ir3) lox d P P 3  1; dB sin’ e( 

- gD( Q 2 )  4p2 COS’ e) 
p4+ 2 (3.10) 

where K is the reference short distance cut-off parameter. With use of the fixed point 
value t l * ( x * ~ ) / 2 + 0 ( ~ ’ )  the scaling form of G ( q )  is given by 

G(q) =2N?{g(QZ)+-WQ,  w>, (3.1 1 )  

where 

(3.12) 

x = cu*N2( N / ~ K ) - “ ’ ~ .  (3.13) 

In this derivation the logarithmic anomaly in the second term of (3.10) has been 
absorbed into g(  0’) with modification q(  N/2)”’+  q( N/2)”2t‘/’6 . The argument Q 
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in (3.11) is now defined by 

Q = q( N/2)‘/2+”’6.  (3.14) 

The origin of the exponent ~ / 4  in (3.13) will be described in the next paragraph. 
Now we calculate the scaling form of S( 4 ) .  J ( 9 )  is obtained by adding the interchain 

correlation term to G ( q )  as given (2.9). Therefore manipulation similar to the above 
yields the following form, 

J ( q )  = 2N2Cg(Q2)+ E(g(Q2))’ 1n((N/2K)”2)+ &N(Q, X)l  (3.15) 

where Q is again given by (3.14). The non-singular part N(Q,  X )  takes the following 
form, 

X 1: d0 sin’ O( 

Substituting J ( q )  into (2.8) we obtain the scattering function S ( q ) .  It should be noted 
that the extra divergence which appeared in the second term of (3.15) can be eliminated 
by replacing cu*N2 with C U * N * ( N / ~ K ) - ‘ / ~ .  This has been used in (3.13). Thus the 
scaling form of S( q )  is written up to O( E )  as 

(3.17) 

The wavenumber of the scattering functions obtained in (3.1 1)  and (3.17) are scaled 
by the quantity proportional to the radius of gyration in the dilute limit (see(3.14)). 
However the characteristic lengths in a semi-dilute solution are the concentration 
dependent radius of gyration and the correlation lengths. Therefore the scaling with 
these quantities would be more convenient. 

We employ the radius of gyration RG for the scaling form of G( 4 ) .  RG is obtained 
in I as follows, 

RL = RLJI  + ET)(X)] 
where 

(3.18) 

RL,= ( N / 2 ) ( d / 3 ) (  N / ~ K ) “ ~ (  1 - h ~ )  (3.19) 
and 

(3.20) 

with 
3 0 6 3 1  30 24 6 1 

v ( y )  y12 y10 y 8  +-+ Y6 ( ,,,I2 y10 (3.21) 

(3.22) 

RGD is the radius of gyration of a polymer chain in the dilute limit. We introduce 

0 = qRG = @fy1[( 1 +  ET)(^))( 1 - ~ h ) ] ” ~  (3.23) 
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with 
& = d/3.  (3.24) 

Substitution of the relation derived from (3.18), Q = $/{g“h[( 1 + q ( X ) ) (  1 - ~h)]”‘} ,  
into (3.1 1 )  gives G( q )  in the following form u p  to O( E )  

(3.25) 

where 
f i ( 6 J ) =  M(6/5Ll, x ) + ( 7 7 ( X ) - - h ) g , ( 6 2 / 5 ~ ) .  (3.26) 

Now we examine various limiting behaviours of (3.25). In the limit of X -z ~3 (3.26) 

f i (Q,X)+O (3.27) 

so that G( q )  reduces to 2 N 2 g (  @ / t G ) .  It reflects the fact that when X .+ cc the excluded 
volume interaction in a test chain is screened by the surrounding chains. In the limit 
of 6 +CO (3.26) yields 

fi(6, X ) + l n  6 / ( 4 ( 6 * / 6 ~ ) ) .  (3.28) 

In  (3.25) the correction of order E has been exponentiated. 

gives the result 

Thus G ( q )  may be put into the form 
G ( ~ )  - 0 - 2 ( 1 - ~ / 8 )  (3.29) 

This is consistent with the scaling augument G ( q )  - 6-l”’ and indicates that in this 
limit G( q )  exhibits the wavevector dependence of scattering function of the isolated 
chain with excluded volume effect. We define I s e l f ( q )  as 

(3.30) L d q )  = G(q)/G(O) = G(d” 
and also the zeroth-order scattering function Z:elf(q) as 

Ce , r iq)  = 2 g ( 0 2 ) .  (3.31) 
The curves of ( Zselr(q))-‘ for a few values of X and ( ZLI f (  q)) - ’  as a function of 6’ 
are depicted with E = l (d  = 3 )  in figure 1. It is, found that (Zfel,-(q))-’ and ( I S e l f ( q ) ) - ’  
for each X, cross each other at some value of Q. This has been observed in a previous 
study in a dilute solution (Witten and Schafer 1981, Ohta et a1 1982). The intersecting 
point shifts to larger 6 as X increases. 

We take up the correlation length 5 to make a scaling from of S ( q ) .  6 can be 
written up to O ( E )  from I as 

(3.32) 

(3.33) 
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/ 

Figure 1.  Plots of ( Z s e , d q ) ) - '  for a few values of X and 
(I:elf(q))-' against Q2. The broken line indicates 
(Zyelf(q))-' and the chain line, the dotted line and the 
full line denote ( Z S J q ) ) - '  for X =0.05, 1.0 and 100 
respectively. 

Figure 2. Plots of ( Z ( q ) ) - '  for a few values of X 
against 0'. The chain line, the dotted line and 
the full line denote ( Z ( q ) ) - '  for X=0.05 ,  1.0, 
and 100 respectively. 

where it is noted that 6 J 2 / d N  -2J1 = O ( E ) .  The expressions of J1 and J2 have been 
given in the appendix of I. We define 

Q = q [ =  Q€M{(l+El(X))(l -eh)} ' / '  (3.35) 

(3.36) 

Q in the RHS of (3.17) is replaced with Q =  Q / { [ ( l + q ( X ) ) ( l  - e h ) } ' / ' .  Thus S ( q )  
is given up to O ( E )  by 

with 

L ( Q ,  X I =  N ( Q / & ,  X ) + g , ( Q 2 / 5 ~ ) ( l ( x ) - h ) .  (3.38) 

We have again exponentiated the first-order correction. Introducing the osmotic 
compressibility through the thermodynamic relation 

C N ~ / S ( O )  = a r / a c  (3.39) 
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we can write (3.37) in a normalised form: 

(3.40) 

where 

(3.41) 

In the limit Q + cc (3.38) becomes 

Hence Z ( q )  behaves as 
I ( ~ )  - Q - 2 ( 1 - ~ 1 ' 8 )  (3.43) 

Thus for the large scattering wavenumber I ( q )  becomes the same as G ( q )  as expected. 
We carried out the numerical calculation of (3.40). The curves of ( l / Z ( q ) )  as function 
of 0' for several values of X are shown with E = l(d = 3) in figure 2. 

4. Comparison with experiments 

Recently there have been several attempts to detect the scaling law quantitatively. 
Noda et a1 (1981) have measured the concentration dependence of the osmotic 
compressibility of poly( a-methylstylenes) in a good solvent by a light scattering 
experiment. Their data obtained in the samples having the different but sufficiently 
large values of molecular weight clearly show the scaling behaviour. The theory (Ohta 
and Oono 1982) exhibits a good agreement with the experiments with one unknown 
parameter adjusted. A more definite comparison is possible if we use the experimental 
results by Wiltzius et a1 (1983). They have performed the light scattering measurement 
of the correlation length and the osmotic compressibility of polystylenes in good and 
marginal solvents. These are the very same quantities that we have calculated in I .  
Thus one can compare our theory with the experiment uniquely without any adjustable 
parameters. 

The scaling form of the scattering function itself has also been measured in the 
dilute limit by Noda et a1 (1983). Figure 3 displays S ( q )  for X = 0 with the experimental 
data. The theoretical result by the naive &-expansion which yields S ( q ) -  o-2('-c'*)( E = 1 )  for Q >> 1 is also plotted. This agrees with the previous one obtained 
directly in the dilute limit (Ohta et a1 1982). Figure 3 shows that the present theory 
improves agreement with the experiment over the zeroth-order result. However there 
is still a discrepancy for large values of 0. Although we expect that this discrepancy 
is partially understood by the difference between 2v = 1 + ~ / 8  = 1.125 and 2 v  = 1.176 
(Le Guillou and Zinn-Justin 1980) we do  not have a satisfactory method of replacement 
at present. 

Now we make a comparison with the results by Wiltzius et a1 (1983). The osmotic 
compressibility has been given up to O ( E )  by (3.41) and is exhibited in figure 4. As 
was done in I the factor ~ / 4  in the exponentiated function is replaced by (2 - dv)/(dv - 
1) with d = 3 and Y = 0.588 so that aT/ac - X'""'' for X >> 1 .  The exponentiation 
procedure of the order E correction is slightly different from that in I. However the 
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t 
4 0  c 

L 
I 

U 
I 

20 

0 50 100 

Figure 3. ( I (  q ) ) - ’  for X = 0.0 against 0’ and the experimental data by Noda et a /  (1983) 
together with the zeroth-order result ((2g(Q2))-’ .  0, (3 and 0 mean the data points for 
several samples having the different values of molecular weights. The full line; ( I ( q ) ) - l  
for X = 0.0 and the broken line: (2g(Q2))-’ .  

difference for J?r/dc is at most 1% in the range lo-’< X < 10’. In figure 4 the data 
by Wiltzius et al are also plotted. Our X was chosen to be the same as their X. Since 
Wiltzius et al, have determined the unknown proportionality constant between X and 
c through the second virial coefficient we may say that there is no adjustable parameter 
in figure 4. 

The correlation length is given by (3.30) which may be written as 

t2 = K ( x ) R & ( ~ T / J c ) - ’  (4.1) 

where K ( X )  and RG have been obtained numerically in I. The first-order correction 
of RG given by (3.18) has been esponentiated. Our differs from the definition by 
Wiltzius et al by a factor of J3. Figure 5 displays the result together with the 
experimental data. Since the horizontal axis has been fixed in figure 4 there is no 
adjustable parameter in these comparisons. The agreement is shown to be very good. 

100 

10 
L. 
‘0 
10 

1 

0.01 0.1 1 10 100 
X 

Figure 4. Calculated d x / d c  against X and the experimental data by Wiltzius et a1 (1983). 
0, 0,  A, A and so on denote the data points for several samples with the different values 
of molecular weights and solvents of different quality. 
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i 
0 g 

0.01 01 1 10 100 
X 

Figure 5. Calculated 6 against X and the experimental data by Wiltzius et a1 (1983). The 
meaning of symbols is given in figure 4. 

Although our result is correct up to O(E)  we have partially taken account of the 
higher-order correction in such a way that d.n/ac and 5 exhibit the correct scaling 
behaviour for X >> 1 in three dimensions. This is one of the reasons of the above good 
agreement. 

Schafer (1984) has also obtained the scaling forms of a.rr/ac and 5 by means of 
the polymer-magnet correspondence. The results for a monodisperse and good solvent 
case are quite similar in magnitude to those obtained in I except for one important 
point: in the limit X + m  the universal ratio in (4.1) is given by 

K ( m )  =exp[l7[1-2v)/(dv- 1)/4]= 1 - 1 7 ~ / 3 2 + 0 ( ~ ' )  (4.2) 

which yields K ( m )  = 0.47 for E = 1. If we use d = 3 and v = 0.588 we get K ( m )  = 0.376. 
Schafer has not evaluated K ( m )  analytically. From his expressions of a.n/ac and 5, 
however, one can estimate K ( m )  in three dimensions which is found approximately 
to be 

K ( m )  = 0.8. (4.3) 
Thus there is a difference of about a factor of 2 between two results. At present the 
origin of this discrepancy is not clear since Schafer has not described his derivation 
of a v / a c  and 6 in detail. 

5. Discussions 

We have shown our renormalisation group calculation of the scaling form of the 
scattering functions. The results up to O(E)  exhibit agreement with the available 
experiments better than the mean field result. However, there is still room to improve 
the theory such that it deals systematically with the high q behaviour of S(q) in three 
dimensions. 

In a recent paper Schafer (1984) has made a comment on our papers (Ohta and 
Oono 1982, Ohta and Nakanishi 1983) that some specific features of the collective 
effects in the semi-dilute limit are ignored in our work. Since Schafer does not specify 
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what we have really ignored? it is hard to reply to his comment. It should be emphasised 
that our results are exact up to O(E) .  With the exponentiation procedure all the 
quantities show the proper asymptotic behaviour in the semi-dilute limit: a.rr/dc - 
x I l ( d u - I )  and 6 -  x u / ( l - d u )  with d = 4- E and 2v = 1 + ~ / 8 .  As was mentioned in § 4 
the scaling form is insensitive to choice of the exponentiation procedure. Schafer 
employs the double expansion in terms of E and w(w-&”- 1) where w + O  in the 
semi-dilute limit. In the osmotic pressure there appears an anomalous term like 
w( w - e ’ 2  - 1)/(8( 1 - w ) )  which signifies the breakdown of the expansion in terms of w 
in the semi-dilute regime. Our theory also incorporates this anomaly in the form of 
- ( ~ / 1 6 ) X - ’ I n ( X + l )  (see equation (8) of Ohta and Oono 1982). Furthermore it 
should be noted that this anomalous term is negligible in the semi-dilute limit compared 
to the leading term X”‘”” . As was described in § 4 a true discrepancy appears in 
the universal ratio K(m).  If treated correctly both theories should yield the same value 
of K (a) irrespective of the exponentiation procedure or the double expansion. 
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Appendix 

fi(3’( Q, P )  and fi(4)( Q, P )  defined by (3.4) and (3.5) have been given up to O( q 2 )  in 
I. Here their full expressions are needed for the numerical calculation of scattering 
functions. From (2.3), (2.4), (2.5) and (2.11) they are finally put with a tedious but 
straightforward calculation in the forms, 

1 1 + (e-Q2-1)+ (ePp2-1) ( 2 P -  Q+ P2)Q4 ( 2 P .  Q+  Q2)P4 

+ 
P4(P+ Q)’+Q4(P+ Q ) 2 f Q 4 ( P 2 + 2 P -  Q ) + P 4 ( Q 2 + 2 P -  Q) 

t In the published version Schafer has added (2.30) and several sentences which were not in his preprint. 
However those are similar to the description in this section. 
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(CP2  - 1) 
2 

P6(2P* Q +  Q 2 )  
(e-Q‘ - I + 2 

Q6(2P* Q +  P 2 )  
+ 

where Q and P are defined in (3.3) and g(x) is given in (3.6). 
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